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Abstract—This paper presents a mathematical model to investigate the effects of initial twist on the
vibratory characteristics of cantilever shallow conical shells. The energy functional is minimized
according to the Ritz procedure to arrive at the governing eigenvalue equation. A set of orthogonally
generated two-dimensional polynomials associated with a basic function, which accounts for the
boundary expressions and constraints, is introduced to approximate the in-plane and transverse
displacement amplitude functions. The complete procedure has been automated to compute the
vibration frequencies and mode shapes for exemplary problems. In the numerical experiments, the
convergence of eigenvalues is confirmed by increasing the degrees of polynomials employed in the
admissible shape functions. To enhance the existing literature, a set of first known frequency
parameters is presented. The paper highlights the important effects of angle of twist on the vibration
frequencies and mode shapes of conical shells. The fundamental physical frequency w decreases
monotonically for a longer conical shell. The result shows that an increase in the angle of twist does
not ensure higher torsional stiffness for a conical shell, which is in contradiction with previous
observation for a pretwisted beam or plate. The symmetry of modes is absent when the angle of
twist is non-zero.

1. INTRODUCTION

Extensive practical uses of cantilever pretwisted shallow conical shells can be found in
various engineering disciplines ranging from aerospace and marine industries to civil and
structural applications. The vibratory characteristics are thus of critical influence to the
performance and safety of these structures. In the early days, they had been normally
modelled as a pretwisted cantilevered beam (Carnegie, 1959). This treatment is only jus-
tifiable provided that the structures are slender or only lower vibration modes are required.
The effects of initial twist on the torsional rigidity of beams have been investigated by Chu
(1951), Rosen (1980) and Shield (1982). They showed that the torsional rigidity of beams
increases for increasing angle of twist. There exists also numerical models and experimental
investigations of turbomachinery blades using cantilever pretwisted plates such as those
reported by Leissa et al. (1984), MacBain et al. (1985), Kielb et al. (1985) and Liew and
Lim (1994). These studies omitted the variable surface curvature of the blade. The vibration
study of twisted thin cylindrical shells by Tsuiji and Sueoka (1990) has reported that the
frequencies of torsional modes do not increase monotonically as the angle of twist increases.

Innumerable references dealing with the vibration analysis of closed conical shells can
be found (Leissa, 1973 ; Chang, 1981). Despite its practical importance, the vibration of
open conical shells has received relatively little attention and none of them, to the authors’
knowledge, accounted for pretwisted shallow conical shells. Results on the vibrations of
untwisted shallow conical shells have been reported by Lim and Liew (1994a).

To fill this apparent void, the present study employs an energy approach to examine
the effects of initial twist upon the vibration characteristics of pretwisted shallow conical
shelis. The energy functional is minimized in accordance with the Ritz procedure. A set of
orthogonally generated two-dimensional polynomials (p-2) associated with a basic function
(b) is introduced to represent the admissible in-plane and transverse displacement amplitude
functions. These pb-2 shape functions ensure the automatic satisfaction of the geometric
boundary conditions because the piecewise boundary expressions and their respective
constraints are formulated as intrinsic components of the basic functions. Consequently,
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Fig. 1. Geometry of the (a) untwisted shallow conical shell with trapezoidal planform; (b) of the
pretwisted shallow conical shell.

this new approach is highly versatile in accommodating various boundary conditions.
Mathematical difficulties in complex shell geometry such as trapezoidal or triangular plan-
form can also be easily overcome. Numerical formulation and computational implemen-
tation are greatly simplified since no mesh generation is needed. Furthermore, only relatively
small amounts of computational memory and execution time are required and yet accurate
results can be achieved because only a single global element is involved.

In this study, the numerical convergence of eigenvalues is carefully verified through a
convergence study. To enhance the existing literature, a set of first known non-dimensional
frequency parameter covering wide ranges of angle of twist and a/s ratio [see Fig. 1(a)] is
presented. The effects of initial twist on the vibration frequency will be discussed in depth
and also illustrated by means of mode shape displacement plots.

2. FORMULATION OF ENERGY EQUATIONS

Consider a homogeneous, isotropic, thin shallow conical shell with length a, reference
width b,, thickness &, vertex angle 6, and base subtended angie of cone 8, as depicted in
Fig. 1(a). Since the conical shell is shallow, it may be assumed that the cross section in Fig.
1(a) is elliptical. The component of radius of curvature in the chordwise direction R,(x, y)
is a parameter varying both in the x- and y-directions. The variation in the x-direction is
linear. There is no curvature along the spanwise direction (R, = o). The cantilever shell,
clamped along x = 0, is pretwisted with radius of twist R,, as shown in Fig. 1(b). The
radius of twist is related to the angle of twist by
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tany = — ;—. 1)

The displacements are resolved into three orthogonal components u, v and w with
respect to the midsurface of the shell with u along the x-axis, v tangential to the midsurface
and w normal to it.

The total strain energy, %, is given by

U =YUA Uy, )
where %, is the membrane strain energy due solely to the stretching effects of the midsurface

and %, is the bending strain energy of the shell.
The strain energy components can be expressed as

= %’3 f j [(ax+sy)2—2(1 —v)(sxay— ivz)] dxdy )
and
D s ?wo*w  [*wV?
Uo=7 JL {(Aw) -2(1 —V)I:E;; 6—yz— - (6x0y) }}dxdy, C))

where the flexural rigidity D = ER*/12(1 —v?), E is Young’s modulus, v is the Poisson ratio
and A is the Laplacian operator defined as (6%/0x + 0*/dy*). The double integration above
is performed throughout the projected trapezoidal planform of conical shell A.

The strains of the membrane can be expressed in terms of the displacements as

ou

Ex = 5); (53.)
ov w

"=t R (5b)
ov oOu 2w (50)

ny=5)‘c @ E;

The kinetic energy is given by

ph ou\>  (ov\t  [ow\?
7= LG+ ) + (&) Joro X

where p is the mass density per unit volume.
Assuming the free vibration amplitude to be small, the displacement functions take
the following forms,

u(x, y, ) = U(x, y) sinwt (7a)
v(x,y,t) = V(x,y)sinwt (7b)
w(x,y,t) = W(x,y)sinwt, (7¢)

where w denotes the angular frequency of vibration. Using eqns (5a-c) and (7a—), the
strain energy and kinetic energy components [eqns (3), (4) and (6)] can be simplified to the
following expressions :
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where (¥ )maxs (¥o)max and F ., are the respective maximum stretching strain energy,
maximum bending strain energy and maximum kinetic energy in a vibratory circle.

3. FORMULATION OF EIGENVALUE EQUATIONS

Introducing the non-dimensional coordinate system as follows:
I &
é - a > N b() 3 (93., 9b)

where a and b, are the length and reference width of the shell planform as shown in
Fig. 1(a). The displacement amplitude functions U(¢,n), V(&,n) and W(&,n) can then be
approximated by a set of two-dimensional polynomials of the form

U = 3 Cudulesn) (10a)
VEn) = 3 Cuulen) (10b)
W) = 3. Cubulon). (100)

in which C,;, C,, and C,; are the unknown coefficients and ¢,,, ¢,;, and ¢, are the cor-
responding pb-2 shape functions to be discussed in due course. The varying radius of
curvature can also be expressed in terms of this coordinate system,

Bo
f&ny

R,(&,m) = (1)

where B, is the reference major radius as shown in Fig. 1(a). The function f(, ) can be
derived from the geometry of conical shell and is expressed as follows:

Bo

S
s RGN (12

f&n =

where
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(13a)
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—=—|1—-{=)] 14
= e[-CH] =
Let IT be the energy functional given by
(15)

II = J”ma\x’_'g.rnax’

where % .., is the sum of eqns (8a,b). This energy functional is then minimized with respect
to the coefficients according to the Ritz procedure,

oIl

6C,,~=0’ o =wu,vandw, (16)

which leads to the governing eigenvalue equation,
(12K—*M){C} = {0}, )

where K is the stiffness matrix and M is the mass matrix expressed as follows

[[Ka] (Kol [Kud
K= K.] [K.] (18a)
| sym K]
[[(M.] (0] [0]
M= (M,.] [0] (18b)
L sym M.,

and the vector of unknown coefficients is
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{CJ
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The elements in the stiffness and mass matrices are given by

K
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where i, j= 1,2 ... m and m is determined by the degree of polynomial employed in the
shape functions. The double integrations above are symmetric where

Sl = I, I = Fha. (21a,21b)

4. ADMISSIBLE DISPLACEMENT FUNCTIONS

The admissible pb-2 shape functions ¢,; (¢ = u, v and w) are the product of sets of
orthogonally generated complete two-dimensional polynomials and a kinematically ori-
ented basic function expressed as follows:

i—-1

Gu(&, 1) = fil&, 1) P -j; EiPeys (22)
where
By = ‘2—’2“5 (23a)
1Ay = [Lﬁ(éa N Pa1PodEdn (23b)
By = f L (¢.)*dEdn (23¢)

o = u,vand w.

The inner product of any two different terms in the series satisfies the orthogonality
condition

0ifi #j

lifi =/ (24)

jJ ¢ai(€9 }?)éaj(éy ’7) df d?[ = {

The use of these two-dimensional orthogonal polynomials to approximate the transverse
deflection (W) of an annular sector plate has been discussed in detail by Liew and Lam
(1993). It has also been further extended to account for in-plane (U and V') and transverse
(W) deflections by Lim and Liew (1994a,b). In the present analysis, the similar shape
functions are used to approximate the in-plane and transverse deflections of a conical shell.

The basic function, ¢,,, defined as the product of the equations of the continuous
piecewise boundary geometric expressions each of which is raised to a basic power depend-
ing on the types of boundary constraints imposed on the shell, i.e.

$uEm) = [ D& I @5)

=]

a=uvandw,

where n, is the number of supporting edges; I'; is the boundary expression of the ith
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supporting edge; v,., (¢ = u, v and w) are the basic powers. The powers for the transverse
boundary conditions {(x = w) are 0, 1 or 2 corresponding to a free, simply supported or
clamped edge. For the in-plane boundary conditions (o = u and v), the power is 0 for a
completely free edge and 1 for either a simply supported or clamped edge. This implies that
the in-plane deflection gradients, ou/dn, # 0, du/én, # 0, dv/on, # 0 and dv/dn, # 0, where
n. and n, are directions normal and tangential to the shell peripheries.

The Ritz method requires an admissible function which satisfies the geometric bound-
ary conditions. The imposition of the powers to the basic functions results in a class
of kinematically oriented pb-2 shape functions consistent with the following geometric
boundary conditions:

Ulieo =05 Vipeo=0; Wleo=0 (26a, 26b, 26¢)
and
ow
= 0. (26d)

For illustrative purposes, the basic functions for the cantilevered conical shell is

(lbul = 5.5 ér! = 57 ¢wl = é?— (273., 27b’ 270)

which satisfy the above geometric boundary conditions.
The two-dimensional polynomials X7, fi(¢, %), can be expressed as

m p ¢

2 fEm=Y Y& (28)
i= g=0 i=0
with m and p related by

= OO0 )

where p is the degree of the complete set of two-dimensional polynomials employed.

5. RESULTS AND DISCUSSION

Having derived the eigenvalue equation and method of solution, the algorithm is
implemented to obtain solutions for vibration frequencies of pretwisted cantilever shallow
conical shells. Since 4 is a function of a as expressed in eqn (19j), another non-dimensional
frequency parameter i’ = wb}./ph/D, or equivalently i’ = le /e, where e, = by/s is a
constant which can be determined using eqn (14c) and e, = a/s, is introduced here. The
physical frequency  is proportional to A’ which is used in all the subsequent tables and
figures.
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Table 1. Convergence of 2" = wb}./(ph/D) for the pretwisted shallow conical shell with v = 0.3, a/s = 0.5,
sih == 1000, 8, = 15°, 6, = 30° and ¢ = 45°

P Mode sequence number
u v w 1 2 3 4 5 6 7 8

10 10 10 023651 1.0297 2.5911  2.7863 4.9699 59293  6.4859 82920
10 10 i1 0.23643  1.0292  2.5911 27854 49677 59279  6.4859  8.2882
10 10 12 023635 1.0290 2.5909 2.7844 49669 59270  6.4859  8.2839
10 10 13 023632 1.0287  2.5909 2.7839 49660 59259 64856 82822
10 10 14 023628 10287 2.5909  2.7835 49657 59252 64855  8.2801
10 10 15 023627 1.0286  2.5907 27833 49655 59246 64853 82794

10 11 15 023624 1.0285 2.5906 2.7829 49651 59236 64844  B.2672
10 i2 1S 023623 10284 25906 27827 4.9649 59229 64840  8.2636
10 13 15 023623 1.0284 25905  2.7827 49647 59226 64837  8.2627
10 14 15 0.23622 1.0284 25905 27825 49646 59225 64836  B8.2626

10 15 15 0.23622  1.0284 2.5903  2.7825 4.9646 59223 64834  8.2623
11 15 15 023619 1.0282 25903  2.7821 49630 59214  6.4827  8.2423
12 15 15 0.23616 1.0281 25903  2.7817 49627 59212 64827  8.2322

13 15 15 023616 1.0280 25903  2.7816 49624 59210 6.4826  8.2318
14 15 15 0.23615 1.0280  2.5902  2.7814  4.9623 59208 64826  8.2311
15 15 15 023615 1.0280 2.5902 27814 49621 59208 64826  8.2308

The convergence of eigenvalues is shown in Table I. Monotonic downward con-
vergence is demonstrated signifying a distinct nature of Ritz procedure which always
overestimates the structural stiffness of the conical shell. However, accuracy of results can
be ensured by employing satisfactory degrees of polynomials for the in-plane and transverse
shape functions. From Table 1, it is shown that degrees 15, 15 and 15 for u, v and w are
sufficient to furnish the satisfactory convergent eigenvalues.

A set of non-dimensional frequency parameters covering wide ranges of a/s is presented
in Table 2. The Poisson ratio is fixed at 0.3, thickness ratio s/4 at 1000.0 while the vertex

Table 2. Frequency parameter 4’ = wb} ./ (ph/D) for the pretwisted shallow conical shell with v = 0.3, s/4 = 1000,
8, = 15°and 8, = 30°

Mode sequence number

" ? 1 2 3 4 5 6 7 8
0.2 21021 30890 92965 10134 17255 22194 25370  27.312
03 10274 21768 47404 60640 10642 11502 11931  16.030

0.4 0.63879 1.7850 2.6925 4.6908 6.5539 6.9417 7.9776 11.662
0° 0.5 0.45689 1.5872 1.7267 3.9728 4.1078 4.5848 6.6226 7.5149
0.6 0.35997 1.2037 1.4840 2.7622 3.2709 3.6000 5.0253 5.8618
0.7 0.30608 0.89631 1.4323 1.9593 2.5107 3.3806 3.5111 5.4378
0.8 0.27832 0.71224 1.4065 1.4573 2.0353 2.5448 3.2874 3.9747

0.2 1.4771 4.2047 7.6520 11.735 17.616 22.176 25.929 27.784
0.3 0.84448 2.5766 4.0341 6.8670 9.6492 12.033 12.905 15.990
0.4 0.56767 1.9704 24504 5.0113 5.9861 7.1916 8.7116 10.487
15° 0.5 0.42308 1.6244 1.6905 3.8804 4.1409 4.7688 6.9347 7.1210
0.6 0.34116 1.1543 1.5479 2.6693 3.3583 37214 4.8869 6.0336
0.7 0.29410 0.86983 1.4756 1.9144 2.5778 3.4431 3.4633 5.4242
0.8 0.265964 0.69703 1.4324 1.4387 2.0818 2.5218 3.3363 3.9280

0.2 0.94477 4.4594 8.1448 11.392 20.412 21.694 27.243 30.041
0.3 0.58204 2.6746 4.0343 6.6985 10.435 11.913 14.027 17.835
0.4 0.42558 1.8747 2.5955 4.6852 6.3784 7.7910 8.7828 10.986
30° 0.5 0.33981 1.3660 2.0077 3.3906 4.6140 5.2916 6.3742 7.7987
0.6 0.28828 1.0213 1.7435 2.4433 3.5926 4.0925 4.5835 6.4358
0.7 0.25752 0.79473 1.6095 1.7986 2.7685 3.3155 3.6730 5.1650
0.8 0.24179 0.65205 1.3643 1.5403 2.2095 2.4755 3.4856 3.8002

0.2 0.61642 3.2701 9.3908 12.054 18.651 26.448 29.211 33.022
0.3 0.37519 1.8930 5.3009 5.8233 10.267 13.448 16.599 17.673
0.4 0.28260 1.3385 3.5875 3.6918 6.8931 8.2606 9.8056 11.420
457 [UN] 0.23615 1.0280 2.5902 2.7814 4.9621 5.9208 6.4826 8.2308
0.6 0.21015 0.82020 20175 2.2211 3.7070 4.5097 4.8374 6.1884
0.7 0.19603 0.67350 1.5765 1.9229 2.8417 3.3969 4.1161 4.7476
0.8 0.19070 0.57563 1.2420 1.7579 2.2067 2.6668 3.4962 3.8837
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Fig. 2. Effects of angle of twist ¥ on the fundamental frequency parameter 4’ for a shallow conical
shell with v = 0.3, s/h = 1000, §, = 30° and 6, = 15°.

angle 6, and base subtended angle 6, are respectively 15° and 30°. The angle of twist
varies from 0° (an untwisted shell) to 45°. The effects of a/s and initial twist ¥ on w can be
observed from this table. The fundamental physical frequency w decreases monotonically
as a/s increases. The influence of initial twist on the fundamental 1’ is illustrated in Fig. 2.
The fundamental 4’ decreases when y increases for a fixed a/s. This shows that the structural
stiffness of the conical shell is reduced for a higher . The significance of  on the stiffness
(particularly the torsional stiffness) of a conical shell will be discussed at length shortly.
Figures 3-5 present the effects of ¥ and a/s on the fundamental A’ for conical shells
with v = 0.3, s/h = 1000.0, 8, = 30° and 6, changing from 30°, 45° and 60°, respectively. It
can be deduced that shells with a higher ¢ reduce the fundamental A"; this is valid for

8.0

6.0

4.0

Fundamental Frequency Parameter X

2.0

0_0\.L4|.1A|.1.

0.2 0.3 0.4 0.5 0.6 0.7 08
Ratio a/s

Fig. 3. Effects of angle of twist ¢ on the fundamental frequency parameter 4’ for a shallow conical
shell with v = 0.3, s/4 = 1000, 8, = 30° and 6, = 30°.
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0.2 0.3 0.4 0.5 0.6 0.7 0.8
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Fig. 4. Effects of angle of twist § on the fundamental frequency parameter 4’ for a shallow conical
shell with v = 0.3, 5/k = 1000, 8, = 30° and 6, = 45°.

8, = 15°, 30°, 45° and 60°. Comparing Figs 2-5, it is demonstrated that an increase in 0,
causes higher fundamental 1’ for a fixed y.

Figure 6 illustrates the transverse vibration mode shapes of the pretwisted conical shell
with a/s = 0.2, 8, = 30° and 8, = 30°. Although the in-plane vibration modes represented
by U and V in eqns (10a,b) are not shown here, they also exist for shallow pretwisted
conical shells. The shaded regions represent areas with negative vibration amplitude while
the unshaded regions otherwise. However, the shaded and unshaded regions can be inter-
changed because only the vibration araplitude is of primary concern. The lines of demar-
cation in between the regions are the nodal line with zero displacement amplitude. From
Fig. 6, it is evident that the fundamental vibration mode is the torsional mode (1-T) for
¥ = 0°, 15°, 30° and 45°. It can also be seen that the first spanwise bending mode (1-SB)

60.0 [~

50.0

40.0

30.0

20.0

Fundamental Frequency Parameter X'

10.0

0.0 I DU RN S S B
0.2 0.3 0.4 0.5 0.6 0.7 0.8
Ratio a/s
Fig. 5. Effects of angle of twist ¢ on the fundamental frequency parameter A’ for a shallow conical
shell with v = 0.3, s/h = 1000, §, = 30° and 8, = 60°.
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Fig. 6. Effects of angle of twist ¥ on the transverse vibration mode shapes for a shallow conical shell with v = 0.3, s/k = 1000, 6, = 30", 8, = 30° and a/s = 0.2.
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occurs at mode 2 for ¢ = 0° which is the only mode without a nodal line. The subsequent
modes in sequence are the 1-CB, 2-T, 1-SCB, 3-T, 2-SCB and 2-CB modes where CB stands
for chordwise bending, T for torsional and SCB for combination of spanwise and chordwise
bending modes.

It is interesting to note that A’ for the I-T mode decreases as ¢ increases. This
observation seems contradictory to both physical intuition and previous publications (Chu,
1951 ; Rosen, 1980 ; Shield, 1982). However, this fact agrees well with the results reported
recently by Tsuiji and Sueoka (1990). They have shown that the frequencies of torsional
modes do not increase monotonically as the angle of twist increases. This implies that the
torsional stiffness of a conical shell does not necessarily increase for a higher ¢, in con-
tradiction to the experimental and computational results of previous researchers for beams
(Chu, 1951 ; Rosen, 1980 ; Shield, 1982) and pretwisted plates (Leissa et a/., 1984 ; MacBain
et al., 1985 ; Kielb et al., 1985). If we further observe eqns (5b,c), it is reasonable to point
out that the torsional stiffness of a conical shell depends on the coupling effects of both the
radius of curvature R, and radius of twist R,,. When R, is absent (a pretwisted plate), a
decrease in R,, (thus an increase in ) results in higher torsional stiffness and frequency.
As both of them (R, and R,,) are present, however, the above statement is no longer valid.

It should be noted that for = 07, all the vibration modes are symmetric with respect
to the x-axis because the shell is untwisted. However, this symmetry of modes disappears
when ¢ increases because the geometry of shell is no longer symmetric. The higher modes
for i # 0° can be regarded as combinations of torsional, spanwise bending and chordwise
bending modes and it is therefore impossible to classify the modes easily.

6. CONCLUSIONS

A new global energy procedure was proposed to examine the effects of initial twist on
the vibration behaviour of shallow conical shells. The variational energy functional is
minimized in accordance with the Ritz procedure. A set of pb-2 shape functions was
introduced to represent the admissible displacement amplitude functions. These shape
functions incorporate the piecewise boundary expressions each raised to an appropriate
basic power to ensure the satisfaction of the geometric boundary conditions. The upper-
bound convergent eigenvalues were carefully verified through a convergence study. It has
been shown that the fundamental A’ decreases when  increases or 8, decreases. The effect
of a/s on the fundamental 4’ can be seen in Table 2 or Figs 2-5. The fundamental physical
frequency @ decreases monotonically as a/s increases. It has been shown that an increase
in the angle of twist, though increases the torsional frequencies of a pretwisted beam or
plate, does not ensure higher torsional stiffness for a conical shell. It has also been found
that the symmetry of modes is absent when the angle of twist is non-zero.
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